A Collocation Method Based on the Bernoulli Operational Matrix for Solving High-Order Linear Complex Differential Equations in a Rectangular Domain
نویسندگان
چکیده
منابع مشابه
A Collocation Method Based on the Bernoulli Operational Matrix for Solving High-Order Linear Complex Differential Equations in a Rectangular Domain
and Applied Analysis 3 Remark 5 (complex partial differential operators). Thepartial differential operators ∂/∂x and ∂/∂y are applied to a complexvalued function f = u + iV in the natural way: ∂f ∂x = ∂u ∂x + i ∂V ∂x , ∂f ∂y = ∂u ∂y + i ∂V ∂y . (7) We define the complex partial differential operators ∂/∂z and ∂/∂z by ∂ ∂z = 1 2 ( ∂ ∂x − i ∂ ∂y ) , ∂ ∂z = 1 2 ( ∂ ∂x + i ∂ ∂y ) . (8) Thus, ∂/∂x =...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملA NEW MODIFIED HOMOTOPY PERTURBATION METHOD FOR SOLVING LINEAR SECOND-ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we tried to accelerate the rate of convergence in solving second-order Fredholm type Integro-differential equations using a new method which is based on Improved homotopy perturbation method (IHPM) and applying accelerating parameters. This method is very simple and the result is obtained very fast.
متن کاملBernoulli operational matrix method for system of linear Volterra integral equations
In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has been developed to approximate the solution of system of linear Volterra integral equations. System of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the hybridi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2013
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2013/823098